

JOURNAL OF BIODIVERSITY AND CONSERVATION

Moths of Jamtara Forest Division, Jamtara, Jharkhand, India

Bankar Ajinkya Devidas¹, Subhalakshmi Rout² and Sanjeet Kumar^{2*}

¹Office of Divisional Forest Officer, Jamtara Forest Division, Jamtara, Jharkhand, India

²Animal Science Division, Ambika Prasad Research Foundation, Odisha, India

*Email-Id: sanjeetaprf@gmail.com

ARTICLE INFO

Article HistoryReceived: 10 October 2023Received in revised form: 24 October 2023Accepted: 25 October 2023

Abstract

Moths are the butterflies of the night, more active during the night, feeding on the nectar of flowers, facilitating pollination, and consuming fruits. They belong to the largest phylum, Arthropoda, in the animal kingdom and the class Insecta. Their role in the food web maintains the ecological balance of the environment. They are indicators of a healthy forest. They are reared for silk and food all over the world, but some moths are also clinically studied due to their toxic sting, which causes hypersensitive reactions, inflammation, etc. in humans. Keeping the importance of moths in view, an attempt has been made to document the moth diversity in Jamtara Forest Division (JFD), Jharkhand, from May 2023 to October 2023. The present study revealed that 50 moth species under 43 genera in 12 different families are recorded. It was noted that family Erebidae being dominant followed by the family Crambidae. The present study highlights the importance of moths in pollination which is directly linked to our foods and ecological balance.

INTRODUCTION

Insecta are the largest class in the animal kingdom, belonging to the arthropod phylum. Insects are hexapod invertebrates with a chitinous exoskeleton, a three-part body, three pairs of jointed legs, one pair of compound eyes, and one pair of antennae. Moths belong to the class Insecta of the order Lepidoptera (Kumar et al. 2022). They are considered as

"Butterflies of the night" due to their nocturnal behaviour. Most moths are active during the night, but there are some that are crepuscular and diurnal. They are the most taxonomically and ecologically diverse insect taxon (Wagner et al. 2021). There are approximately 1,60,000 species of moths are reported and many have not been discovered yet, and they make up the vast majority of the order (Kawahara et al. 2019). They are totally different from butterflies, mainly in the aspect of the presence of thin antennae and small balls at the end of the antennae in butterflies and shorter and feathery antennae with no ball on the end in moths. Mostly, they are herbivores, feeding the plant parts of trees, shrubs, grass, fungus, lichen, and algae, but some moths are detritivores. Moths are significant contributors of insect biomass for insectivores as both caterpillars and adults are important dietary food sources for many animals like bats, birds, arachnids, rodents, lizards, etc. (Diaz and Long 2022; Figure 2). The caterpillars of moths are major agricultural pests and sometimes cause severe damage to fruit farms and crops. Some larvae of moth species eat clothes made of natural proteinaceous fibres like wool or silk. Some adult moths, like Luna, Atlas, and other large moths, do not have mouth parts, live off the food reserves of the caterpillar, and only live a short time as adults. Some moths, like Bombyx mori and other silk moths, are reared for their economic values. The larvae of some moths are an important food source and are sold not only in local markets but also shipped abroad (Wu et al. 2021). Some moths are of clinical significance as they can cause sting reactions, hypersensitivity reactions, inflammation, urticaria, etc. (Golman and Bragg 2022). Moths like butterflies and bees serve an essential role in pollinating flowering plants through flying from flower to flower to feed on nectar (Krenn 2010). Most nocturnal moth pollinators are overlooked and less frequently studied in comparison to the diurnal ones, as they actively pollinate at night. Moths show positive phototactic behaviour as they are frequently seen circling around artificial lights (Jagerband et al. 2023). However, the light pollution caused by the increasing use of different types of electrical lights is disrupting the nocturnal pollination and reproduction ecology of moths, leading to a decline in their population in some parts of the world (Alternatt and Ebert 2016). They are indicators of a healthy ecosystem as their population gets affected by sudden, degradable changes in the environment (Hill et al. 2021). Keeping the importance of moths in mind, a survey was conducted in Jamtara Forest Division, Jharkhand, India, to document the moth diversity of Jamtara Forest Division, Jharkhand and brings more attention to their conservation approaches.

METHODOLOGY

Field surveys were conducted in the four ranges of Jamtara Forest Division (JFD), Jharkhand, from May 2023 to October 2023 to explore the diversity of moths. The study area comprises four ranges, namely the Jamtara Range, Kundahit Range, Narayanpur Range, and Nala Range (Kumar and Devidas 2023). The survey was conducted both during the day and night. The photographs of moths were taken, sighted, and identified in the field as per their morphological characteristics with the help of available literature (Kumar et al. 2022). Some online sources, like Moths of India (https://www.mothsofindia.org/), India Biodiversity Portal (https://indiabiodiversity.org/), and iNaturalist (https://www.inaturalist.org/), were used in the identification. During the survey, none of the moths were harmed or killed.

RESULTS AND DISCUSSION

From the survey conducted in Jamtara Forest Division (JFD), Jharkhand, 50 moth species were identified (Plate 1). The identified species come under 43 genera of 12 different families (Table 1). Out of the 50 moth species, 1 moth species belongs to Family Cossidae, 13 moth species to Family Crambidae, 1 species to Family Drepanidae, 16 species to Family Erebidae, 1 species to Family Eupterotidae, 9 species to Family Geometridae, 2 species to Family Lasiocampidae, 3 species to Family Noctuidae, and 1 species each to Family Nolidae, Family Notodontidae, Family Sphingidae, and Family Uraniidae (Figure 1).

Scientific name	Common name	Family
Achaea janata	Castor semi-looper	Erebidae
Agrius convolvuli	Convolvulus hawk-moth	Sphingidae
Agrotis segetum	Turnip moth	Erebidae
Aloa lactinea	Red costate tiger moth	Erebidae
Anisephyra ocularia	NIL	Geometridae
Anomis flava	Cotton looper moth	Erebidae
Antheua servula	NIL	Notodontidae
Argina astrea	Crotalaria pod borer	Erebidae
Artena dotata	NIL	Erebidae
Asota caricae	Tropical tiger moth	Erebidae
Bastilla arcuata	NIL	Erebidae
Bastilla crameri	NIL	Erebidae
Bastilla joviana	NIL	Erebidae
Biston suppressaria	Tea looper	Geometridae
Botyodes asialis	NIL	Crambidae
Botyodes caldusalis	NIL	Crambidae
Brunia antica	NIL	Erebidae
Carea angulata	NIL	Nolidae
Chalciope mygdon	Triangular-striped moth	Noctuidae
Chlorissa distinctaria	NIL	Geometridae
Cydalima laticostalis	Pearl moth	Crambidae
Diaphania indica	Cucumber moth	Crambidae
Episteme adulatrix	Day flying moth	Noctuidae
Erebus macrops	Common owl-moth	Erebidae
Eudocima materna	Dot underwing moth	Erebidae
Eupterote gardneri	Monkey moth	Eupterotidae
Gastropacha pardale nandina	Brown lapped moth	Lasiocampidae
Gesonia obeditalis	NIL	Noctuidae
Glyphodes bicolor	Bicoloured pearl	Crambidae
Glyphodes stolalis	NIL	Crambidae
Haritalodes derogata	Cotton leaf roller	Crambidae

Table 1: Some common moth species of Jamtara Forest Division (JFD)

Maruca vitrata	Maruca pod borer	Crambidae
Micronia aculeata	Grey swallowtail moth	Uraniidae
Nausinoe perspectata	NIL	Crambidae
Pingasa chlora	White looper moth	Geometridae
Pingasa ruginaria	Bordered duster moth	Geometridae
Polyphagozerra coffeae	Red coffee borer	Cossidae
Problepsis deliaria	Eye looper moth	Geometridae
Problepsis vulgaris	NIL	Geometridae
Pygospila tyres	Spotted grass moth	Crambidae
Pyrausta signatalis	Raspberry pyrausta moth	Crambidae
Scopula decorata	Middle lace border	Geometridae
Spirama helicina	NIL	Erebidae
Spirama retorta	Indian owlet-moth	Erebidae
Spoladea recurvalis	Beet webworm moth	Crambidae
Teldenia vestigiata	NIL	Drepanidae
Terastia meticulosalis	Erythrina borer	Crambidae
Thalassodes quadraria	Grey greenish looper	Geometridae
Trabala vishnou	Rose-myrtle lappet moth	Lasiocampidae
Trigonodes hyppasia	Semi-looper	Erebidae

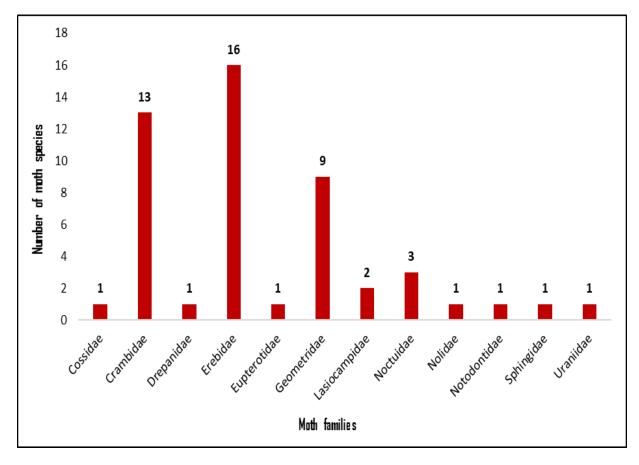


Figure 1: Moth diversity in Jamtara Forest Division, Jharkhand

Figure 2: Role of moths in the food web

Plate 1: Some common moths found in Jamtara Forest Division, Jharkhand; a) *Eupterote gardneri*, b) *Episteme adulatrix*, c) *Spirama retorta*, d) *Achaea janata*, e) *Scopula decorata*, f) *Micronia aculeata*

Other researchers have also reported moth diversity from Jharkhand state like Singh et al. (2017) identified 74 moth species under 66 genera of 15 different families from Topchanchi Wildlife Sanctuary, Jharkhand, during the survey period of September 2016 and October 2016. Singh et al. (2017) reported 81 species representing 70 genera of moths collected during October 2016 from the study sites Masanjor, Dumka, and Udhwa Bird Sanctuary, Sahibganj. They also reported 20 species for the first time from Jharkhand as well as from the Gangetic Plains. Singh et al. (2018) reported 140 species under 106 genera of moths from the Koderma district of Jharkhand state based on four surveys conducted in July 2012, August 2013, September 2014, and October 2015 and found that Family Erebidae was dominant among the studied 17 moth families. Husain et al. (2022) communicated a new record of Chiasmia emersaria (Walker, 1861), a geometrid moth from Jamshedpur, Jharkhand, with its systematic account, distribution, host plants, and natural control measures. Kaustubh et al. (2022) reported the occurrence of Lymantria mathura Moore, 1866, for the first time from Saranda Forest Division, Jharkhand, which is a pest species of Shorea robusta (Sal). The above discussion revealed that, less or no reports are available on moth diversity of Jamtara Forest Division, Jamtara, Jharkhand before present study.

CONCLUSION

Pollination is the lifeline of life on the earth. Due to anthropogenic activities and climatic changes, the population of pollinators is declining at an alarming rate. If not this time, humans could face their end with a smiling face in the near future. In this aspect, the present study brings attention to the study and conservation of pollinators like moths. In a preliminary survey, the authors documented 50 moths of Jamtara Forest Division, Jamtara, Jharkhand, which highlights the biodiversity of the division and creates awareness about the importance of moths through this article. Further exploration is needed to understand their behaviors and make strategies for their conservation efforts in the state.

ACKNOWLEDGEMENT

Authors are thankful to the field staffs of Jamtara Forest Division, Jamtara, Jharkhand and local communities.

REFERENCES

- Alternatt F and Ebert D. (2016). Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biology Letters. 12(4): 20160111. DOI: 10.1098/rsbl.2016.0111.
- Diaz CJ and Long JHJ. (2022). Behavior and bioadhesives: how bolas spiders, *Mastophora hutchinsoni*, catch moths. Insects. 13(12): 1166. DOI: 10.3390/insects13121166.

Goldman BS and Bragg BN. (2022). Caterpillar and moth bites. StatPearls Publishing, Treasure Island, Florida.

Hill GM, Kawahara AY, Daniels JC, Bateman CC and Scheffers BR. (2021). Climate changes effects on animal ecology: butterflies and moths as a case study. Biological reviews of the Cambridge Philosophical Society. 96(5): 2113-2126.

- Husain A, Husain HJ and Hasan W. (2022). New record of *Chiasmia emersaria* (Walker, 1861) (Lepidoptera: Geometridae) from Jamshedpur, Jaharkhand (India), with distribution and host plants. International Journal of Agricultural and Applied Sciences. 3(1):120-123.
- Jaggerband A, Andersson P and Tengelin MN. (2023). Dose–effects in behavioural responses of moths to light in a controlled lab experiment. Scientific Reports. 13: 10339. DOI: 10.1038/s41598-023-37256-0.
- Kaustubh K, Joshi R and Hasaan SMM. (2022). Report of occurrence of *Lymantria Mathura* (Lepidoptera: Erebidae) from Saranda Forest Division, Jharkhand, India. Acta Entomology and Zoology. 3(1): 30-33.
- Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, Donath A, Gimnich F, Frandsen PB, Zwick A, Reis MD, Barber JR, Peters RS, Liu S, Zhou X, Mayer C, Podsiadlowski L, Storer C, Yack JE, Misof B and Breinholt JW. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences USA. 116(45): 22657-22663.
- Krenn HW. (2010). Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annual Review of Entomology. 55(1): 307-327.
- Kumar S and Devidas AB. (2023). Biodiversity assessment in Jamtara Forest Division, Jharkhand.
- Kumar SN, Pradhan I, Mishra AK and Kumar S. (2022). Moths diversity in Barsuan range, Bonai Forest Division, Odisha, India and their ecological importance. Asian Journal of Biology. 15(3): 1-5.
- Singh N, Ahmad J and Joshi R. (2017). An inventory of moths (Lepidoptera) from Topchanchi wildlife sanctuary, Jharkhand. Journal of Entomology and Zoology Studies. 5(4): 1456-1466.
- Singh N, Ahmad J and Joshi R. (2017). Diversity of moths (Lepidoptera) with new faunalistic records from North East Jharkhand, India. Records of the Zoological Survey of India. 117(4): 326-340.
- Singh N, Ahmad J and Joshi R. (2018). Moths (Lepidoptera) diversity of district Koderma, Jharkhand. Journal of Entomology and Zoology Studies. 6(2): 1253-1263.
- Wagner DL, Fox R, Salcido DM and Dyer LA. (2021). A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences USA. 118(2): e2002549117. DOI: 10.1073/pnas.2002549117.
- Wu X, He K, Velickovic TC and Liu Z. ((2021). Nutritional, functional, and allergenic properties of silkworm pupae. Food Science & Nutrition. 9(8): 4655-4665.